If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2=21348
We move all terms to the left:
x^2-(21348)=0
a = 1; b = 0; c = -21348;
Δ = b2-4ac
Δ = 02-4·1·(-21348)
Δ = 85392
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{85392}=\sqrt{144*593}=\sqrt{144}*\sqrt{593}=12\sqrt{593}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{593}}{2*1}=\frac{0-12\sqrt{593}}{2} =-\frac{12\sqrt{593}}{2} =-6\sqrt{593} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{593}}{2*1}=\frac{0+12\sqrt{593}}{2} =\frac{12\sqrt{593}}{2} =6\sqrt{593} $
| 2.4^(3x+1)=9 | | 4x+1+9x-4=23 | | 4x+1=9x-4=23 | | x÷15=1÷5 | | X=7x-13 | | 20.7=(0.2×x)+3.5 | | 4x²-12x-4=0 | | 2x+2(6x+7)+5=6x+5-2 | | h+15=(13) | | 13x-3=42 | | 4x–3=3x+2 | | 7.98x+16=63.6804+4x | | 21=m/9-17 | | -2k+3.44=16.08 | | b-349=517 | | b/3-8=-5 | | 0.8(10x+23)=4.5(0.2x+5) | | 2(x+3)+29+3x=180 | | 19=u/2+16 | | 9p-7=47 | | 5p−17=−2 | | (1-w)(4w+5)=0 | | 4j-16=4 | | 77=-13+5v | | 5x^2+10=45 | | 1/5x-15=45 | | -n/5+14=29 | | 7t+2=93 | | -1x+6=1/3x+4/3 | | .07x=1500 | | 12x-108=36 | | 5(v-4)(-v-1)=0 |